Hyacinthos message #21421

Let ABC be a triangle and P a point.

Let (Q) be the CEVIAN circle of P and (Qab), (Qac) the circles
touching AB,AC and (Q) internally and let (Tab), (Tac) be the points of contact.
Similarly we define the points Tbc, Tba and Tca, Tcb.

Which is the locus of P such that the lines TabTac, TbcTba, TcaTcb are
concurrent ? ¡¡¡ For all P, they are concurrent.!!!

Este es un Applet de Java creado con GeoGebra desde www.geogebra.org – Java no parece estar instalado Java en el equipo. Se aconseja dirigirse a www.java.com


(Qac) = incircle, Tac=Tba=Tcb=T=X11

(Q'ac)= A-excircle. Sac Sba and Scb the Feurbach points, S=X12

Angel Montesdeoca, Creado con GeoGebra