Una construcción del centro de curvatura en cónicas

Angel Montesdeoca (14/10/2009)

Previamente tratamos unos hechos relativos a transformaciones de curvas y proyectividades entre sus elementos, que nos sentarán las bases para las construcciones posteriores.

Consideremos una transformación entre puntos del plano de ecuaciones

$$\bar{x} = F(x, y), \qquad \bar{y} = G(x, y).$$
 (1)

Sea $P_0(x_0, y_0)$ un punto en el que el jacobiano de esta transformación no se anula. A una curva \mathcal{C} que pasa por P_0 le corresponde otra $\bar{\mathcal{C}}$, que pasa por \bar{P}_0 , transformado de P_0 . Si la curva \mathcal{C} viene dada por las ecuaciones paramétricas x = x(t), y = y(t), las ecuaciones paramétricas de $\bar{\mathcal{C}}$ se expresarán en la forma $\bar{x} = \bar{x}(t) = F(x(t), y(t)), \ \bar{y} = \bar{y}(t) = G(x(t), y(t));$ entonces,

$$\frac{\bar{y}'(t)}{\bar{x}'(t)} = \frac{G'_x x'(t) + G'_y y'(t)}{F'_x x'(t) + F'_y y'(t)}.$$

Si denotamos por m y \bar{m} las pendientes de las correspondientes tangentes a las curvas en estos puntos, se tiene que

$$\bar{m} = \frac{G_x' + G_y'm}{F_x' + F_y'm}.$$

Para simplificar, se ha omitido el punto (x(t), y(t)), donde están valuadas las funciones.

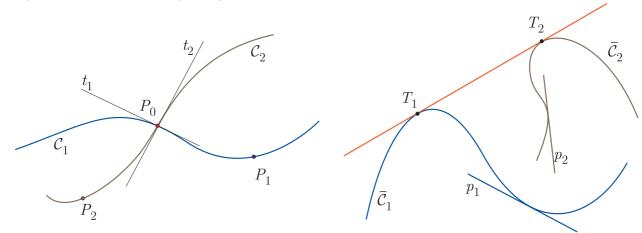
Como hemos supuesto que $F_x'G_y' - F_y'G_x' \neq 0$, se concluye que:

Proposición.- La correspondencia entre las tangentes en P_0 a las curvas que pasan por él y las tangentes en \bar{P}_0 a sus curvas imágenes, mediante la transformación (\square) , es una proyectividad.

Si la transformación es entre puntos y rectas del plano, definida por

$$u = F(x, y), \qquad v = G(x, y), \tag{2}$$

a una curva \mathcal{C} que pasa por $P_0(x_0, y_0)$ le corresponde una curva $\bar{\mathcal{C}}$ (obtenida como envolvente rectas) tangente a la recta (u_0, v_0) , $p_0 \equiv u_0 x + v_0 y + 1 = 0$, correspondiente a P_0 .



Si la curva \mathcal{C} viene dada por las ecuaciones paramétricas x = x(t), y = y(t), para obtener la envolvente $\bar{\mathcal{C}}$ de las rectas correspondientes a los puntos de \mathcal{C} , se ha de resolver el sistema

$$F(x(t), y(t))X + G(x(t), y(t))Y + 1 = 0$$
$$(F'_x x'(t) + F'_y y'(t))X + (G'_x x'(t) + G'_y y'(t))Y = 0$$

Con lo que las ecuaciones paramétricas de la curva $\bar{\mathcal{C}}$ son

$$\bar{x} = \bar{x}(t) = \frac{-G'_x x'(t) - G'_y y'(t)}{(FG'_x - GF'_x)x'(t) + (FG'_y - GF'_y)y'(t)},$$

$$\bar{y} = \bar{y}(t) = \frac{F_x'x'(t) + F_y'y'(t)}{(FG_x' - GF_x')x'(t) + (FG_y' - GF_y')y'(t)}.$$

Si el jacobiano de la transformación no se anula en $P_0(x(t_0), y(t_0))$ y poniendo $m = y'(t_0)/x'(t_0)$, se obtiene:

Proposición.- Entre las tangentes a las curvas en P_0 y los puntos de contacto con la recta p_0 de las curvas envolventes de las rectas imágenes de sus puntos, por la transformación (2), es una proyectividad definida por

$$\bar{x} = \frac{-G'_x - G'_y m}{FG'_x - GF'_x + (FG'_y - GF'_y)m}, \qquad \bar{y} = \frac{F'_x + F'_y m}{FG'_x - GF'_x + (FG'_y - GF'_y)m)},$$

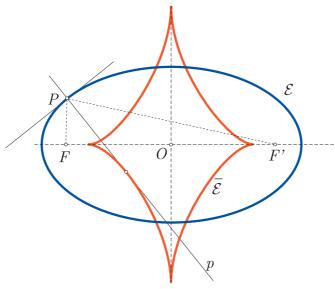
donde las funciones y sus derivadas están valuadas en x_0, y_0).

Nótese que la definición de esta proyectividad no depende de la curva tomada; es decir, si dos curvas, que pasan por P_0 , tienen la misma tangente en P_0 , entonces las respectivas envolventes de las rectas correspondientes a sus puntos, tienen el mismos punto de contacto con p_0 .

Pasamos ahora, usando este último resultado, a construir el <u>centro de curvatura de una elipse</u> en uno de sus puntos. Para ello, consideramos la siguiente trasformación geométrica \mathcal{T} :

Dados dos puntos F y F' a cada punto P del plano se le hace corresponder la bisectriz interior del ángulo $\widehat{FPF'}$.

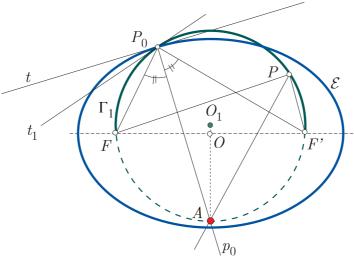
Si P recorre una elipse \mathcal{E} de focos F y F', sea p es la recta normal a la elipse en P. La envolvente de la recta p, cuando P varía, es la evoluta (lugar geométrico de los centros de curvatura) de la elipse.



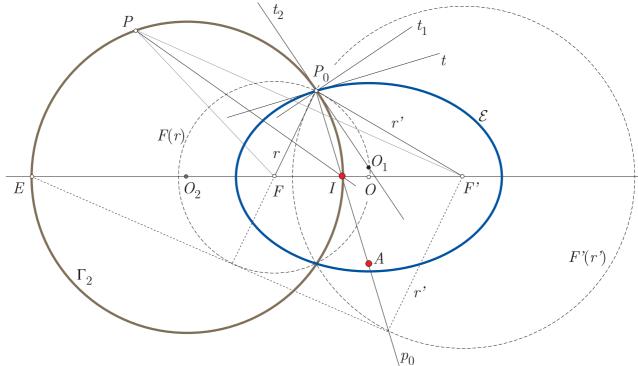
Si P_0 es un punto de \mathcal{E} (que no sea uno de sus vértices), tratamos de encontrar el punto de contacto de la bisectriz p_0 del ángulo $\widehat{FP_0F'}$ con su evoluta $\bar{\mathcal{E}}$. Para ello vamos a encontrar tres pares de elementos homólogos de la proyectividad entre tangentes en P_0 (a curvas que pasen por él) y puntos de la recta p_0 , que nos permitan definir la proyectividad y hallar, así, el homólogo de la tangente t a la elipse en P_0 ; es decir, el centro de la curvatura de la elipse en el punto P_0 .

Para determinar la proyectividad, vamos a tomar tres curvas que pasen por P_0 , con tangentes distintas en este punto y que tampoco coincidan con la tangente t a la elipse.

I) Sea Γ_1 el arco $\widehat{FP_0F'}$ de la circunferencia que pasa por estos tres puntos. Para cualquier punto P de Γ_1 , la bisectriz de $\widehat{FPF'}$ pasa por un punto fijo A (punto medio del arco de tal circunferencia de extremos F y F' que no contiene a P_0). Así, la envolvente de estas bisectrices degenera en este punto A, que es el homólogo de la tangente t_1 en P_0 a Γ_1 , en la proyectividad buscada.



II) Pongamos $r = P_0 F$ y $r' = P_0 F'$ y consideremos las circunferencias F(r) y F'(r'), de centros en F yF' y radios r y r', respectivamente; denotemos por I y E los centros de semejanza interior y exterior de estas circunferencias.



Proposición.- La circunferencia Γ_2 de diámetro IE (denominada circunferencia de semejanza

para F(r) y F'(r') o circunferencia de Apolonio de los puntos F y F' para la razón k = r/r') pasa por P_0 y su tangente t_2 en este punto es perpendicular a la tangente t_1 de Γ_1 ; además, las bisectrices de los ángulos $\widehat{FPF'}$, para cualquier punto P de Γ_2 , pasan por I.

De este resultado se sigue que I está en la bisectriz de $\widehat{FP_0F'}$ y a este punto se reduce la envolvente de las bisectrices de $\widehat{FPF'}$, cuando P varía en Γ_2 . Por lo que el segundo par de elementos en la proyectividad buscada es $t_2 \mapsto I$.

Demostración de la proposición:

En primer lugar, se verifica que los puntos I, E, F y F' forman una cuaterna armónica, (I E F F') = -1, pues,

$$\frac{IF}{IF'}: \frac{EF}{EF'} = \frac{r}{-r'}: \frac{r}{r'} = -1.$$

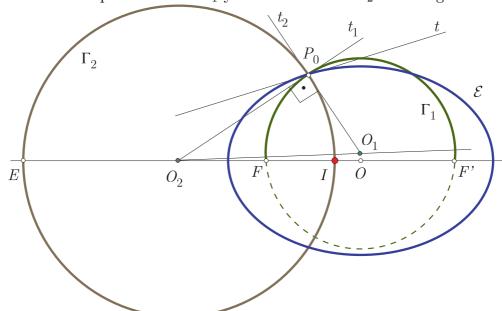
En consecuencia, como $PI \perp PE$, resulta que PI es la bisectriz de $\widehat{FPF'}$, para todo P de Γ_2 . Es decir, la envolvente de las rectas asociadas a los puntos de Γ_2 , mediante la transformación \mathcal{T} , degenera en el punto I.

El punto P_0 está en Γ_2 , pues, usando el teorema de las bisectrices interiores de un triángulo, se tiene, que para todo punto P de Γ_2 ,

$$\frac{PF}{PF'} = \frac{\overline{IF}}{\overline{IF'}} = \frac{r}{r'} = k$$

Luego, P_0 es uno de ellos e I está en la bisectriz de $\widehat{FP_0F'}$ $(I=p_0\cap FF')$.

Nos queda establecer que la tangente t_2 a Γ_2 en P_0 , es perpendicular a la tangente a Γ_1 en P_0 ; es decir, que la circunferencia que contiene a Γ_1 y la circunferencia Γ_2 son ortogonales.



Como (I E F F') = -1, se sigue que

$$O_2 P_0^2 = O_2 I^2 = O_2 F \cdot O_2 F' = O_2 O_1^2 - O_1 P_0^2.$$

Donde, la segunda igualdad surge de que, como

$$IF \cdot EF' + IF' \cdot EF = 0.$$

basta desarrollar ésta, puesta de la forma siguiente

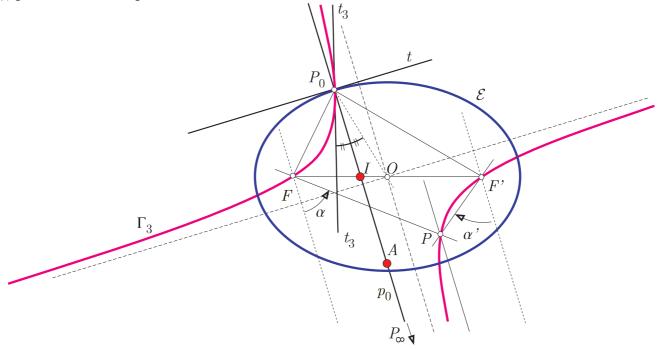
$$(IO_2 + O_2F)(EO_2 + O_2F') + (IO_2 + O_2F')(EO_2 + O_2F) = 0.$$

Para la última igualdad, se usa el valor de la potencia de O_2 respecto a la circunferencia que contiene a Γ_1 .

Concluimos que el triángulo $\widehat{O_1P_0O_2}$ es rectángulo en P_0 , por lo que Γ_1 y Γ_2 son ortogonales.

III) Para definir el tercer par de elementos homólogos en la proyectividad buscada, vamos a tomar como curva, que pasa por P_0 , la hipérbola equilátera Γ_3 que además pasa por F y F', cuyo centro es el mismo que el de la elipse \mathcal{E} (es decir, el punto medio O de FF') y con una asíntota paralela a la bisectriz p_0 de $\widehat{FP_0F'}$.

Esta cónica Γ_3 está definida por los puntos de intersección de los rayos homólogos entre la proyectividad entre haces de base F y F', tal que rectas homólogos forman el mismo ángulo con p_0 , pero de sentido opuestos.



Obsérvese que si un punto P pertenece a ella, también pertenece su simétrico respecto al punto medio O de FF'; es decir, O es su centro.

Si las rectas FP y F'P son paralelas, P será un punto del infinito de la cónica; es decir, nos daría la dirección de una asíntota. Esto ocurre cuando el ángulo que ellas forman con p_0 sea 0 ó $\pi/2$. Se concluye que la cónica es una hipérbola equilátera.

En este tercer caso, que estamos considerando, a la tangente t_3 a Γ_3 en P_0 , corresponde, en la proyectividad buscada, el punto del infinito P_{∞} de p_0 .

Nos falta ver cómo se construye esta tangente t_3 . Para ello, sólo hay que tener presente que si la hipérbola equilátera la referimos a sus asíntotas, su ecuación es xy = k, por lo que la pendiente de la recta que une el origen O con un punto P de la hipérbola es y/x y la de la tangente en P es -y/x. Así, la tangente en un punto P es la recta simétrica de la recta que une el origen con P, respecto a la paralela por P a la asíntota vertical.

En nuestra caso, t_3 es la simétrica de P_0O respecto a P_0I .

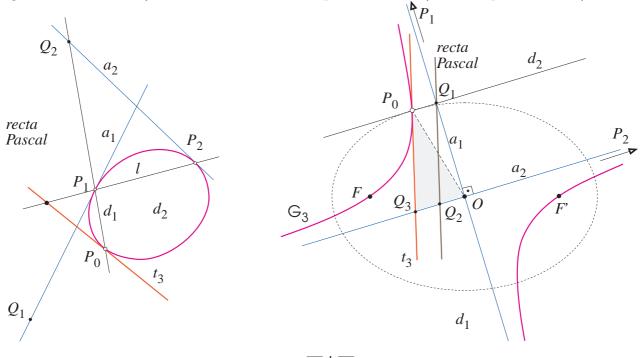
Otra vía para construir la tangene t_3 en P_0 , es haciendo uso del Teorema de Pascal, para un hexágono inscrito en una cónica.

Denotemos por a_1 y a_2 las dos asíntotas (perpendiculares) y por P_1 y P_2 sus puntos de tangencia en la recta del infinito ℓ ; por d_1 y d_2 las paralelas a a_1 y a_2 por P_0 , respectivamente. Tenemos,

¹ De hecho Γ_2 es ortogonal a cualquier circunferencia que pase por F y F'.

entonces, la situación límite del hexágono formado por un triángulo y las tangentes en sus vértices, que podemos esquematizar en el siguiente dibujo de la izquierda.

Haciendo la misma construcción para el caso que nos ocupa (dibujo de la derecha), se tiene que $P_0Q_1OQ_2$ es un rectángulo y $P_0Q_1Q_2Q_3$ es un paralelogramo, de donde se sigue que P_0Q_3 (tangente t_3 en P_0 a Γ_3) es simétrica de P_0O , respecto a P_0Q_2 (bisectriz p_0 de $\widehat{FP_0F'}$).



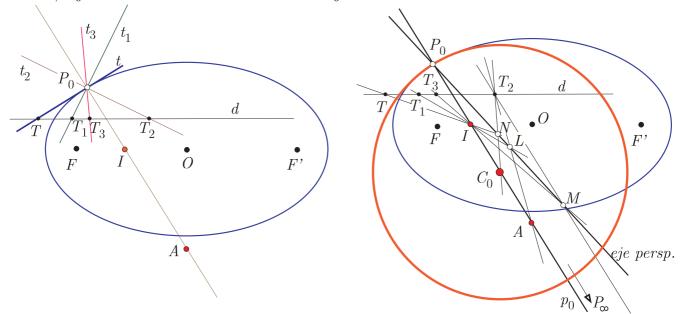
Ya tenemos, para determinar nuestra proyectividad, tres pares de elementos homólogos:

$$t_1 \longmapsto A, \qquad t_2 \longmapsto I, \qquad t_3 \longmapsto P_{\infty}.$$

Una recta cualquiera d corta al haz de rectas por P_0 en los puntos $T=t\cap d$, $T_1=t_1\cap d$, $T_2=t_2\cap d$ y $T_3=t_3\cap d$. Se tiene entonces definida la proyectividad entre d y p_0 , con pares de puntos homólogos

$$T_1 \longmapsto A, \qquad T_2 \longmapsto I, \qquad T_3 \longmapsto P_{\infty}.$$

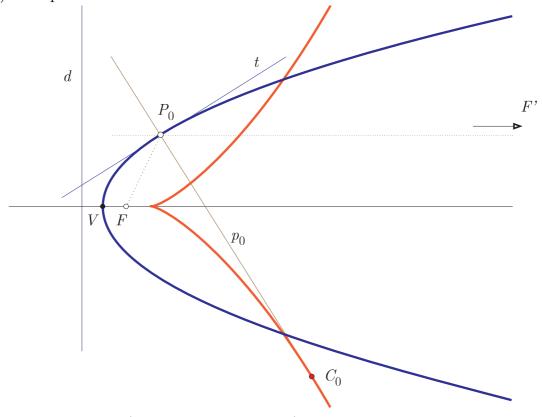
El eje de perspectividad e está determinado por los puntos $L = T_2A \cap IT_1$ y $M = T_2P_{\infty} \cap IT_3$. Sea $N = IT \cap e$, entonces $C_0 = T_2N \cap p_0$ es el homólogo de la tangente t a la elipse \mathcal{E} en P_0 ; es decir, C_0 es el centro de curvatura de \mathcal{E} en P_0 .



Para construcción de el <u>centro de curvatura de una parábola</u> en uno de sus puntos, podemos considerar la misma transformación geométrica \mathcal{T} que en el caso de la elipse; es decir:

Dados dos puntos F y F' a cada punto P del plano se le hace corresponder la bisectriz interior del ángulo $\widehat{FPF'}$.

Si P recorre una parábola \mathcal{P} de foco F y directriz d, sea p es la recta normal a la elipse en P. La envolvente de la recta p, cuando P varía, es la evoluta (lugar geométrico de los centros de curvatura) de la parábola.



Si P_0 es un punto de \mathcal{P} (que no sea el vértice V), tratamos de encontrar el punto de contacto de la bisectriz p_0 del ángulo $\widehat{FP_0F'}$ con su evoluta $\overline{\mathcal{P}}$ (P_0F' es la semirrecta paralela al eje de la parábola, en el sentido \widehat{VF}). Para ello vamos a encontrar tres pares de elementos homólogos de la proyectividad entre tangentes en P_0 (a curvas que pasen por él) y puntos de la recta p_0 , que nos permitan definir la proyectividad y hallar, así, el homólogo de la tangente t a la parábola en P_0 ; es decir, el centro de la curvatura de la parábola en el punto P_0 .

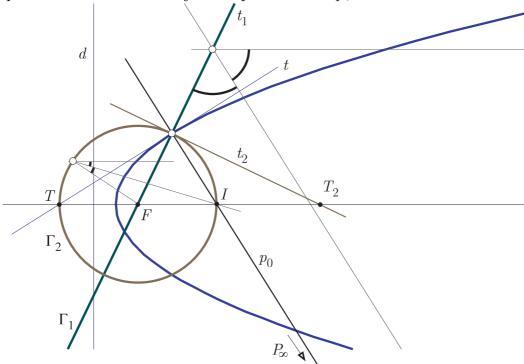
Para determinar la proyectividad, vamos a tomar tres curvas que pasen por P_0 , con tangentes distintas en este punto y que tampoco coincidan con la tangente t a la parábola.

Procedemos como en el caso de la elipse, para encontrar las dos primeras curvas; para lo cual tomaremos la situación límite, cuando F' tiende a punto del infinito del eje. Ocurre entonces que la circunferencia Γ_1 , tomada allí, es ahora la recta FP_0 y la circunferencia de Apolonio Γ_2 es la circunferencia de centro F y radio FP_0 .

- I) La bisectrices de $\widehat{FPF'}$ son todas paralelas a p_0 , cuando P recorre la recta FP_0 . Así, a la tangente t_1 a esta recta (ella misma) en P_0 le corresponde, en la proyectividad que tratamos de determinar, el punto del infinito de p_0 .
- II) Si tomamos un punto P sobre la circunferencia Γ_2 de centro en F y radio FP_0 , los puntos donde los lados del ángulo $\widehat{FPF'}$ cortan a dicha circunferencia, determina una cuerda que siempre es paralela a sí misma (perpendicular a la dirección fija PF'). Luego, la bisectriz de dicho ángulo

pasa por el punto medio I del arco (no conteniendo a P) que la cuerda determina, situado en el diámetro paralelo a la dirección fija PF'; es decir, por el punto de corte de dicha circunferencia con el eje de la parábola.

Así, a la tangente t_2 a Γ_2 en P_0 (perpendicular a FP_0) le corresponde, en la proyectividad buscada, el punto I intersección del eje de la parábola con p_0 .



III) La tercera curva no se pude tomar como situación límite de la hipérbola tomada en el caso de la elipse, pues vuelve a dar, como en el caso I), la recta FP_0 (una de sus asíntotas pasaría la recta del infinito). Ahora, vamos a tomar como curva Γ_3 la envolvente la bisectrices v_P de $\widehat{FPF'}$ (para P sobre p_0) y vamos a demostrar que Γ_3 toca a p_0 en P_0 , sin describir u obtener la ecuación de tal envolvente.

Para establecer esto, supongamos que la ecuación de la parábola es $y^2=2px$, con lo que F(p/2,0) y $P_0(y_0^2/(2p),y_0)$. La ecuación de la normal p_0 a la parábola en P_0 es

$$y - y_0 = -\frac{y_0}{p} \left(x - \frac{y_0^2}{2p} \right).$$

Un punto punto genérico de esta recta se puede poner de la forma P(t,y(t)). Si α es el ángulo que forma la recta FP con el eje de parábola, la bisectriz v_P forma un ángulo $\frac{\alpha}{2} + \frac{\pi}{2}$ con el eje; por lo que su ecuación es

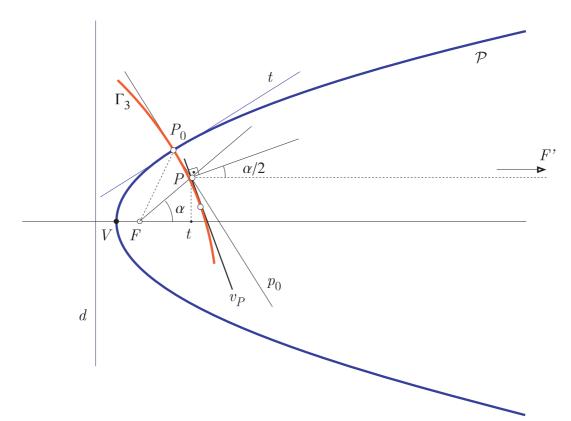
$$y - y(t) = -\operatorname{cotag} \frac{\alpha}{2}(x - t).$$

La ecuación paramétrica de la envolvente Γ_3 , se obtiene resolviendo, en las variables x e y, el sistema formado por esta ecuación y la que resulta de derivarla, respecto a t:

$$-y'(t) = \frac{\alpha'}{2 \operatorname{sen} \frac{\alpha}{2}} (x - t) + \operatorname{cotag} \frac{\alpha}{2}.$$

Como $y'(t) = -y_0/p$, se obtiene

$$x = x(t) = t + \left(\frac{y_0}{p} - \operatorname{cotag}\frac{\alpha}{2}\right) \frac{2\operatorname{sen}\frac{\alpha}{2}}{\alpha'}.$$



Para que el punto de contacto de la bisectriz $p_0 = v_{P_0}$ con Γ_3 sea P_0 , se ha de verificar que para $t_0 = \frac{y_0^2}{2p}$, también sea $x\frac{y_0^2}{2p}$; esto ocurrirá si $\frac{y_0}{p} = \cot \frac{\alpha_0}{2}$ (siendo α_0 el ángulo que forma FP_0 con el eje); es decir, si

$$\tan \alpha_0 = \frac{2 \tan \frac{\alpha_0}{2}}{1 - \tan^2 \frac{\alpha_0}{2}} = \frac{2py_0}{y_0^2 - p^2},$$

que es el valor de la tangente del ángulo que forma FP_0 con el eje:

$$\tan \alpha_0 = \frac{y_0}{\frac{y_0^2}{2p} - \frac{p}{2}}.$$

Tenemos ya, por último, el tercer par de elementos homólogos de la proyectividad: a la tangente $t_3 = p_0$ a Γ_3 le corresponde el punto P_0 .

La proyectividad entre tangentes a curvas por P_0 y puntos de p_0 tiene los tres pares de elementos homólogos:

$$t_1 \longmapsto P_{\infty}, \qquad t_2 \longmapsto I, \qquad p_0 \longmapsto P_0.$$

Si cortamos el haz de rectas por P_0 con el eje de la parábola se obtienen los puntos $T = t \cap VF$, $F = t_1 \cap VF$, $T_2 = t_2 \cap VF$ y $I = t_3 \cap VF$. Se tiene entonces definida la proyectividad entre VF y p_0 , con pares de puntos homólogos

$$F \longmapsto P_{\infty}, \qquad T_2 \longmapsto I, \qquad I \longmapsto P_0.$$

El eje de perspectividad e está determinado por los puntos $P_0 = FP_0 \cap P_{\infty}I$ y $T_2 = FI \cap P_{\infty}T_2$; es decir, $e = t_2$.

Sea $N = P_{\infty}T \cap e$, entonces $C_0 = FN \cap p_0$ es el homólogo de la tangente t a la parábola \mathcal{P} en P_0 ; es decir, C_0 es el centro de curvatura de \mathcal{P} en P_0 .

- Ejemplo -

Encontrar la curvatura y centro de curvatura de la cónica $x^2 - 2xy + y^2 - x + 3y - 4 = 0$ en el punto (0,1).

Damos cuatro formas de resolver el problema: la primera, utilizando una haz de cónicas osculatrices; la segunda, mediante la fórmula que da la curvatura de una curva plana; la tercera, haciendo uso del método expuesto anteriormente para construir el centro de curvatura en un punto de una parábola; y la cuarta, mediante una construcción geométrica, usando una homologia que transforma la cónica en una circunferencia.

• Se trata de calcular la circunferencia con máximo contacto con la cónica en (0,1).

La tangente en el punto dado (0,1) es 3x - 5y + 5 = 0 y una recta arbitraria por (0,1), tiene por ecuación mx - y + 1 = 0.

El haz de cónicas teniendo tres puntos de contacto con la cónica dada en (0,1) está dado por (cónicas osculatrices)

$$u(x^{2} - 2xy + y^{2} - x + 3y - 4) + v(3x - 5y + 5)(mx - y + 1) = 0,$$

o bien

$$(u+3w)x^2 - (2u+3v+5w)xy + (u+5v)y^2 + (-u+3v+5w)x + (3u-10v)y - 4u+5v = 0,$$

donde w = mv. ésta representa una circunferencia si

$$u + 3w = u + 5v,$$
 $2u + 3v + 5w = 0.$

Entonces

$$v = \frac{-3u}{17}, \qquad w = \frac{-5u}{17}, \qquad m = \frac{5}{3}.$$

La ecuación de la circunferencia de curvatura es, poniendo u=17,

$$2x^2 + 2y^2 - 51x + 81y - 83 = 0.$$

El centro de curvatura es $(a,b)=(51/4,-81/4)\simeq(12.75,-20.25)$ y el radio de curvatura $r=\sqrt{c-a^2+b^2}=\sqrt{83/2+(51/4)^2+(-81/4)^2}=17\sqrt{17}/2\sqrt{2}\simeq24.78.$

La gráfica de la izquierda siguiente está extraída del MATHEMATICA:

$$f[u_,v_,m_][x_,y_]:=u(x^2-2x*y+y^2-x+3y-4)+v(3x-5y+5)(m*x-y+1)$$

• Otra forma de resolver este ejercicio es utilizando la fórmula de la curvatura para curvas planas

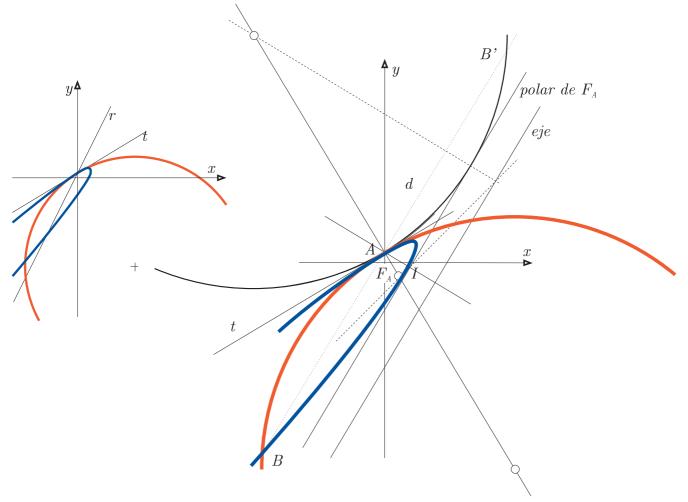
$$\kappa = \frac{y''}{\sqrt{(1+y'^2)^3}},$$

derivando implícitamente, respecto de x, en la ecuación de la cónica.

$$2x - 2y - 2xy' + 2yy' - 1 + 3y' = 0$$
, en $(0, 1)$: $-3 + 5y' = 0$, $y' = 3/5$.

$$2-2y'-2y'-2xy''+2(y')^2+2yy''+3y''=0$$
, para $x=0,y=1$ e $y'=3/5$: $y''=-8/125$.

$$\kappa = \left| \frac{-\frac{8}{125}}{\left(\sqrt{1 + \frac{9}{25}}\right)^3} \right| = \frac{2\sqrt{2}}{17\sqrt{17}}.$$



El centro (a,b) de la circunferencia osculatriz se obtiene teniendo en cuenta la relación $r^2=a^2+(b-1)^2$ y que debe estar en la perpendicular a la tangente de pendiente y'=3/5 en (0,1): 5a+3b=3. Obteniéndose los valores (-51/4,89/4) ó (51/4,-81/4). El segundo es el que vale, pues está en el semiplano definido por la tangente determinado por el sentido de la derivada segunda (125,-8).

• Construcción gráfica de la circunferencia osculatriz mediante la proyectividad entre las tangentes a curvas pasando por un punto de la parábola y puntos de la normal a la parábola en dicho punto:

La cónica se trata de una parábola, pues al cortarla con la recta del infinito da $x^2 - 2xy + y^2 = 0$, que tiene como solución sólo una dirección doble, de pendiente m = 1.

• Construcción gráfica de la circunferencia osculatriz mediante una homología (gráfica de la derecha):

La cónica (parábola) dada queda determinada por los cinco puntos: (0,1) y (0,-4) de intersección con el eje OY, (2,-1) y (-3,-1) de intersección con la recta y=-1, y por el punto (3,1), el otro punto de intersección con la recta y=1.

Utilizaremos una propiedad de un punto de Frégier para transformar la cónica en una circunferencia mediante una homología.

El punto F_A de Frégier relativo al punto A de la cónica, es aquel donde se cortan todas las cuerdas que se ven bajo un ángulo recto desde A. Dos de estas cuerdas lo determinan:

La perpendicular por (0,1) a la cuerda determinada por los puntos (0,1) y (0,-4) es la cuerda que une los puntos (0,1) y (3,1) de la cónica, así una de las cuerdas que se ven bajo un ángulo recto desde A es la une los puntos (0,-4) y (3,1), que tiene por ecuación

$$-5x + 3y + 12 = 0.$$

La perpendicular a la tangente en (0,1) determina otra cuerda que se ve bajo un ángulo recto desde A; su ecuación es

$$5x + 3y - 3 = 0.$$

El punto de Frégier relativo a A es el de intersección de estas rectas, o sea, $F_A(3/2, -3/2)$. Utilizaremos el siguiente resultado:

"Sea A un punto de una cónica. La transformada de esta cónica en una homología de centro A es una circunferencia si y sólo si la recta límite (homotética del eje de homología por una homotecia $h_{A,1/2}$) es la polar del punto de Frégier asociado a A, con respecto a la cónica".

Polar del punto de Frégier (3/2, -3/2):

$$\begin{pmatrix} -8 & -1 & 3 \\ -1 & 2 & -2 \\ 3 & -2 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ -3 \end{pmatrix} = \begin{pmatrix} -28 \\ 10 \\ -6 \end{pmatrix}, \quad 5x - 3y - 14 = 0.$$

El eje de la homología de centro A(0,1) es la recta homotética de esta polar en la homotecia $h_{A,2}$, de centro A y razón 2.

El homólogo del punto de Frégier F_A es el centro de la circunferencia homóloga de la cónica, pues al conservarse la relación polo y polar mediante una homología, y como la polar de F_A es la recta límite de la homología, que se transforma en la recta del infinito, cuyo polo es el centro de la circunferencia. éste se determina trazando la recta que une F_A con el punto I de intersección de la recta límite con la perpendicular a ella por A. La recta F_AI corta al eje en un punto; la perpendicular por este punto al eje corta a AF_A en el centro buscado. La tangente a la cónica, por pasar por el centro de la homología A, queda invariante, por tanto, tal circunferencia es tangente a la cónica en A.

Justificaremos ahora que la circunferencia osculatriz en A a la cónica es la simétrica de la circunferencia homóloga respecto a la simetría de centro A:

La recta d paralela al eje de homología por A corta a la cónica en otro punto B. El punto B' homólogo de B es el simétrico de B respecto a A, luego la circunferencia simétrica, respecto a A, de la obtenida, pasa por B. Esta circunferencia es la circunferencia osculatriz en A a la cónica, pues ella pertenece al haz de cónica osculatrices determinado por la cónica dada y por la cónica degenerada en el producto de la tangente t en y la recta d. También, podemos justificar que se trata de la circunferencia osculatriz, observando que los únicos puntos comunes con la cónica son A y B', luego circunferencia y cónica tienen tres puntos comunes confundidos en A.